
Digital Object Identifier (DOI) 10.1007/s100529900035
Eur. Phys. J. C 10, 629–638 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

Two-loop renormalization group restrictions
on the standard model and the fourth chiral family

Yu.F. Pirogov1,2, O.V. Zenin2

1 Institute for High Energy Physics, Protvino, Moscow Region, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

Received: 2 September 1998 / Revised version: 4 January 1999 / Published online: 28 September 1999

Abstract. In the framework of the two-loop renormalization group, the restrictions on the Higgs mass
from the electroweak vacuum stability and from the absence of the strong coupling are refined, while the
more precise value of the top mass is taken into account. When the SM cutoff is equal to the Planck scale,
the Higgs mass must be MH = (161.3 ± 20.6)+4

−10 GeV and MH ≥ 140.7+10
−10 GeV, where the MH corridor is

the theoretical one and the errors are due to the top-mass uncertainty. The SM two-loop β functions are
generalized to the case with massive neutrinos from extra families. The requirement of self-consistency
of the perturbative SM as an underlying theory up to the Planck scale excludes a fourth chiral family.
Under the precision-experiment restriction MH ≤ 215GeV, the fourth chiral family, if alone, is excluded
even when the SM is regarded as an effective theory. Nevertheless a pair of chiral families constituting a
vector-like one could exist.

1 Introduction

The renormalization group (RG) study of a field theory
(for a review see, e.g., [1,2]) enables one to grossly under-
stand the structure of the theory as a function of a char-
acteristic energy scale. Of special interest are the cases
where the self-consistency of the theory is in danger of be-
ing violated. They may signal either a breakdown of the
perturbative validity or/and the onset of “new physics”.

There are two problems of this kind in the standard
model (SM). The first is encountered when some of the
running couplings tend to blow up at finite scales. Well-
known examples are, e.g., the Landau singularity in QED
(more generally, in any Abelian gauge theory U(1)) or in
the φ4 scalar theory. In the latter case, the problem is
known for a long time as the triviality problem (for a re-
view of triviality arguments see, e.g., [3] and references
therein). Technically, we can hoped to solve it by an im-
provement of the perturbative series or by the develop-
ment of strong coupling methods; but more probably it
has a physical origin, and it could be solved eventually by
a more complete theory which should effectively result in
a physical cutoff (for an example see, e.g., [4]). In partic-
ular, this problem was invoked to justify technicolor as a
substitute for the heavy Higgs boson.

The second problem occurs when a running coupling
leaves the physical region at some finite scale. In the SM,
this happens when the Higgs quartic effective coupling be-
comes negative, which indicates the absence of a ground
state in quantum theory. It is the so-called electroweak
vacuum stability problem (for a review see, e.g., [5]). It is

a real problem of quantum field theory because this phe-
nomenon takes place in the realm of the perturbative va-
lidity. In the framework of the SM, the light Higgs bosons
resulting in the unstable electroweak vacuum should be
forbidden. On the other hand, if this does happen some
new scalar bosons beyond the SM will be required to sta-
bilize the vacuum. Otherwise the light composite Higgs
doublet with the compositeness scale corresponding to the
scale of the stability breakdown might be a natural solu-
tion.

A SM self-consistency study in the framework of the
one-loop RG and restrictions thereof on the SM heavy
particles, i.e. the Higgs boson and the top quark, was un-
dertaken in [3,6,7]. A generalization to the two-loop level
was given in [8–10]. The one-loop RG restrictions on a new
heavy chiral family were studied in [11,12], and those on
a vector-like family were investigated in [13].

The aim of our present study is twofold. Firstly, we
investigate the two-loop RG global profile of the SM in its
parameter space at all conceivable scales. This provides us
with the background required for the RG study of the SM
extension we are looking for. In passing, we refine the RG
restrictions on the Higgs mass in the light of the more ac-
curately known top mass and its uncertainty. Secondly and
mainly, we generalize the RG study of the SM extended
by the fourth chiral family to the two-loop level, and we
refine the one-loop self-consistency restrictions thereof on
the Higgs and fourth family masses. This requires in turn
a generalization of the SM two-loop β functions to the
massive neutrino case, which we present.
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2 Standard model

The two-loop β functions for a general gauge theory in
the MS renormalization scheme are well known in the lit-
erature [14], as is their particular realization for the SM
[14–16] (compact summaries for the SM can also be found
in [17,18]). They are re-collected in a different form in
Appendix A.1, where the explicit Yukawa couplings are
retained only for the third family. In what follows we put
just the generic structure of the emerging one- and two-
loop RG differential equations.

Let gi, i = 1, 2, 3, yf , λ and v be the SM gauge cou-
plings, the Yukawa couplings for fermions f , the Higgs self-
interaction coupling and the vacuum expectation value
(VEV), respectively. Then one gets
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where µ is a renormalization scale, say in GeV, b(1) and
b(2) are one- and two-loop contributions respectively, while
b
(1)
gi are in fact constants. gi′ and yf ′ are the sets of all gi

and yf . For simplicity we here neglected the mixing of
the Yukawa couplings and thus the CP violating phase.
To state it in other terms, the diagonal real form of the
Yukawa matrix Yff ′ =

√
2yfδff ′ is implied.

The two- and higher-loop contributions to β functions,
including the sign, are known to depend in a multi-
coupling theory on the renormalization scheme [2]. Hence
the physical meaning of the running couplings becomes
ambiguous, and it is impossible to improve the perturba-
tive RG analysis of the SM in a scheme-independent way
beyond one loop.

We integrated the RG (1) numerically for µ ≥ MZ with
the following initial conditions at the MZ scale:

α1(MZ) = 0.0102,

α2(MZ) = 0.0338,

α3(MZ) = 0.123, (2)

which is in accordance with α(MZ) = 1/127.90 and sin2

θW(MZ) = 0.2315 [19]. Our normalizations of the gauge
couplings are as follows: g1 = (5/3)1/2g′, g2 ≡ g and g3 ≡
gS, with g′, g and gS being the conventional SM couplings.
We also choose the relations mf = yfv and mH = λ1/2v as
the definition of normalization for the Higgs and Yukawa
couplings, where v = (

√
2GF)−1/2 = 246.22 GeV is the

Higgs VEV. Because the evolution of v(µ) is gauge depen-
dent, we use in what follows only the gauge-independent
observable v ≡ v(MZ).

Besides, at µ = MZ we use the one-loop matching
condition for the physical Mf and the running mf (µ) ≡

yf (µ)v masses of the fermions f = q and l given by
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Here one has
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f is obtained from the expression by substituting

4/3α3 with Q2
fα, where Qf is the electric charge of the

fermion f . The radiative corrections induced by the top
quark and the Higgs boson, δ

(t,H)
f , can be found in [20]:
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where the last line is valid for (MH/2Mt)2 � 1. Similarly,
the initial value mH(MZ) is related to the physical Higgs
mass MH through the running mass mH(µ) ≡ yH(µ)v at
the scale MZ, where

mH(µ) = MH (1 + δH(µ)) . (6)

In the limit (MH/2Mt)2 � 1 one has the following asymp-
totic one-loop expression [20,21]:
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where

f(x) =

{
(4x − 1)1/2arctg(4x − 1)−1/2, x > 1

4
1
2 (1 − 4x)1/2ln 1+(1−4x)1/2

1−(1−4x)1/2 , x < 1
4 .

(8)

When we take this all together, we finally get at MH =
150 GeV:

mτ (MZ) = 1.764 GeV,

mb(MZ) = (4.47 ± 0.50) GeV,

mt(MZ) = (171.8+4.6
−4.7) GeV. (9)
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Fig. 1. Running of the inverse gauge couplings squared α−1
i ,

i = 1, 2, 3. The number of generations is ng = 3. The rep-
resented Higgs masses are those corresponding to the typical
heavy Higgs and to the lower critical Higgs curve shown in bold
in Fig. 3.

The last two values correspond to the physical bottom and
top masses Mb = (4.5 ± 0.5) GeV [19] and Mt = (175 ±
5) GeV [22], respectively. Only errors in the top mass are
left as the main source of the subsequent uncertainties.

As a field theory, the SM can legitimately be pulled
to its inner ultimate limits. This may help to better un-
derstand its structure in the physically reasonable region
µ < MPl, MPl ' 1019 GeV, which is to be considered more
seriously. So all the subsequent numerical results are ob-
tained at all allowed µ with the exact two-loop β functions.
Most of the terms in the latter ones proved to be crucial
for the quantitative evolution of couplings in the physical
µ region up to the Planck scale. However, for the qualita-
tive analysis of the SM RG solutions at extremely high µ,
µ � MPl, we only retain the most representative term in
the coefficients of the β functions given below.

To estimate the dependence of the results on the loop
order and to pick out regions where perturbation theory
may be more reliably trusted, we present both the one-
and two-loop results. They are shown in Figs. 1–5. Let
us discuss them in turn for the gauge, Yukawa and Higgs
sectors of the SM.

2.1 Gauge sector

Figure 1 shows the running with µ of the inverse gauge
couplings squared. Under the simplifications adopted, one
has (with the number of generations here and in what
follows ng = 3)

(4π)2β(1)
g1

=
41
10

,

(4π)4β(2)
g1

=
199
50

g2
1 − 17

5
y2
t + · · · . (10)

Fig. 2. Running of the third family Yukawa couplings (ng =
3). The decreasing curves shown in bold correspond to the
lower critical Higgs mass. The thin lines, close to the latter
bold lines, correspond to the one-loop approximation.

It can be seen that at the one-loop order the coupling
g1 develops a pole singularity at Λ

(1)
g1 , log Λ

(1)
g1 = 41. The

validity of the perturbation theory in g1 restricts α1 ≤ 4π
and hence log µ ≤ 40, which is in the logarithmic scale
twice as large as the Planck scale.

As it is seen from Fig. 1, the actual influence of
yf (λ(µ)) on g1 in two loops is somewhat sizable only for
heavy Higgs. It diminishes the slope of g1(µ) at µ beyond
the Planck scale, where yf are large, and shifts the singu-
larity position Λ

(2)
g1 upwards to log Λ

(2)
g1 = 47 for the heavy

Higgs (mH(MZ) = 450 GeV), which is close to that max-
imally allowed by the perturbative consistency in λ. The
value mH(MZ) = 136.1 GeV corresponds to the critical
lower bound of the electroweak vacuum stability (see later
on). Curves corresponding to the lighter Higgs bosons
are very close to that for mH(MZ) = 136.1 GeV. Curves
for the intermediate values of mH(MZ), i.e. 136.1 GeV
< mH(MZ) < 450 GeV, are located in between the two
extreme cases.

2.2 Yukawa sector

Figure 2 depicts the evolution of the Yukawa couplings yf

for the third family SM fermions: t and b quarks, and the
τ lepton. For the top quark one has approximately
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(4π)2β(1)
yt
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In one loop, β
(1)
f are dominated by the negative gauge

contributions, so that all the yf are decreasing with µ and
lie in the weak coupling regime.1

However, in two loops the behavior changes drasti-
cally. An approximate UV-stable fixed point appears at
y
(UV)
t ' 5.4 due to compensation of the y2

t and y4
t contri-

butions. In the real world, this critical value is approached
from below, both for the t and b quarks and for the τ lep-
ton, the faster the heavier the Higgs boson is. Hence for
a sufficiently heavy Higgs, mH(MZ) ≥ 215 GeV, all third
family fermions would fall into the strong coupling regime
at sufficiently high µ. This would make the third fam-
ily fermions much more alike at the high scales than at
the electroweak scale. In practice, prior to MPl the strong
coupling develops only for the t quark when the Higgs is
rather heavy, mH(MZ) ≥ 450 GeV. Because from the com-
bined LEP data on the precision experiments it follows
that MH ≤ 215 GeV at 95% C.L. [23], one may conclude
that the Yukawa sector of the SM is weakly coupled along
the whole physically reasonable region of µ, µ ≤ MPl.

2.3 Higgs sector

Figure 3 presents running of the Higgs quartic coupling.
For this one approximately has

(4π)2β(1)
λ = 12λ2 − 48y4

t +
27
100

g4
1 + (24y2

t − 9
5
g2
1)λ + · · · ,

(4π)4β(2)
λ = −78λ3 − 3.411g6

1 + · · · . (12)

The β function for the pure Higgs sector is known in the
MS scheme up to the three-loop order [24]

(4π)6β(3)
λ = (897 + 504ζ(3))λ4. (13)

It is scheme dependent.
In two loops, there are three critical curves shown in

bold. First of all, there appears an approximate UV-stable
fixed point at λ

1/2
UV ' 4.93 produced by the compensation

of the one- and two-loop terms: λ2 and λ3. It corresponds
to a boundary value of the Higgs mass m

(2)
H max(MZ) =

1200 GeV, at and above which the theory is definitely
strongly coupled. The boundary Higgs mass for the vac-
uum instability in two loops is m

(2)
H min(MZ) = 136.1 GeV.

The third critical value m
(2)
H inter(MZ) = 156.7 GeV bor-

ders the region with the potentially strongly coupled Higgs
from that with the weakly coupled Higgs. Note that the-
ory with m

(2)
H min < mH(MZ) < m

(2)
H inter is consistent in

two loops up to the ultimate scale µ = Λ
(2)
g1 .

1 To be more precise, the one-loop trajectory for the τ lepton
is mildly convex, so that it intersects with the curve for the b
quark near the GUT scale.

Fig. 3. Running of the Higgs quartic coupling (ng = 3) in two
loops. The critical curves are shown in bold.

For completeness, we present in Fig. 4 the plot for v(µ)
in the ’t Hooft–Landau gauge both in one and two loops.
We see that the electroweak symmetry never restores prior
to the Plank scale.

Finally, one can impose the requirement of the SM self-
consistency up to some cutoff scale Λ. In other terms, the
theory should be neither strongly coupled nor unstable
at µ ≤ Λ. In one loop, this means that the λ singularity
position fulfills the requirement Λ

(1)
λ ≥ Λ, and simultane-

ously one has µ|λ=0 ≥ Λ. In two loops, we should choose
as a criterion for the onset of the strong coupling regime
the requirements β

(2)
λ /β

(1)
λ |Λ and β

(3)
λ /β

(2)
λ |Λ < 1, which

guarantee the perturbativity and reduce the scheme de-
pendence. When we neglect all couplings but λ, this would
mean that λ1/2 ≤ 2, in particular mH(MZ) ≤ 500 GeV,
the restriction we retain for the realistic case. Because we
do not know β

(3)
t , we restrict ourselves just to the require-

ment that β
(2)
t /β

(1)
t |Λ < 1 which is definitely fulfilled at

yt ≤ 2 < y
(UV)
t .

The one- and two-loop restrictions are drawn in Fig. 5.
Here use is made of the exact one-loop equation (6) for
matching between the MS value mH(MZ) and the physi-
cal Higgs mass MH. The sensitivity of the allowed region
of the Higgs mass to the uncertainty of the top-quark
mass is also indicated. Strictly speaking, the region be-
tween the highest and the lowest curves is allowed. This
means that for Λ = MPl the legitimate Higgs mass is
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Fig. 4. Running of the Higgs VEV (ng = 3) in the ’t Hooft–
Landau gauge.

Fig. 5. The SM one- and two-loop self-consistency plot (ng =
3): the allowed Higgs mass vs. the cutoff scale Λ.

MH = (161.3 ± 20.6)+4
−10 GeV. One also gets the lower

bound MH ≥ 140.7 ± 10 GeV at such a cutoff.2

3 The fourth chiral family

Since the two-loop RG global profile of the SM is under-
stood, one is in a position to discuss the SM conceivable
extensions. Here we consider the minimum SM extension
by means of additional heavy fermion families. If alone,
the fourth family should necessarily have the same chiral-
ity pattern as the three light families. This must be re-
quired to avoid the potential problem of large direct mass
mixing for the fourth family with the light ones.

Concerning the fifth family, there are two possibili-
ties: either it has the same chirality as the four previ-
ous families, or it is a mirror one (or, to state it differ-
ently, it is charge conjugate with respect to the rest of
the families). In the first case, the analysis repeats itself
with just more parameters. In the second case, which may
likewise be attributed to one vector-like family, the large
direct mass terms could be introduced for the pair of the
fourth and fifth families, in addition to Yukawa couplings.
This enormously proliferates the number of free parame-
ters and makes the general analysis complicated. On the
other hand, if one adopts a mass-independent renormal-
ization, say MS, the net influence of the direct mass terms
on the evolution of the SM parameters will be just in the
threshold effects. Barring them, this case is technically
similar to the case with two extra chiral families.

For these reasons, we restrict ourselves to one new chi-
ral family. In order to conform with the experimental num-
ber of light neutrinos (nν = 3), we should also add the
right-handed neutrinos νR (at least for the fourth family)
and the proper Yukawa couplings for them. The right-
handed neutrinos may possess the explicit Majorana mass
as well, so that the physical neutrino masses may be quite
different from their Yukawa counterparts. Because in the
mass-independent renormalization the explicit mass terms
are important only in the threshold effects, we disregard
them in what follows. We generalized the two-loop SM β
functions of [14] to the case with the neutrino Yukawa cou-
plings. The results are given in Appendix A.2. The rest of
the β functions is as in [14]. For practical calculations with
the fourth family we neglected the light neutrino Yukawa
couplings. The reduced four-family β functions are given
in Appendix A.3.

At present, there are no theoretical hints on the ex-
istence (or the non-existence) of a fourth (and higher)
family. Nevertheless, one can extract some restrictions on
the corresponding fermion masses. These restrictions are

2 The true condition for the electroweak vacuum stability is
the existence of a global minimum in the Higgs effective poten-
tial [25,26]. For the two-loop RG improved one-loop effective
potential Veff(µ, φ) this turns out at Λ ' MPl to be in practice
equivalent to our requirement that the running coupling does
not become negative. At the lower values of Λ there are dis-
crepancies which we attribute to the difference of the stability
criteria.
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twofold: the direct and indirect ones; these are in a sense
complementary to each other. The first group gives bounds
on the common mass scale of the fourth family, the second
one restricts the splitting of the masses inside the family.

The existing direct experimental bounds on the masses
of the fourth family quarks t4 and b4 depend somewhat
on the assumptions about their decays. If the lightest of
the quarks, say b4, is stable enough to leave the detector,
the limit on its mass is M4 ≥ 140 GeV [27]. On the other
hand, for unstable quarks, decaying inside the detector,
the limit can be estimated from the CDF and D0 searches
for the top quark [22] to be about Mt. Concerning the
neutral and charged leptons of the fourth family, ν4 and
e4, it follows from LEP searches that Mν4 ≥ 59 GeV and
Me4 ≥ 90 GeV at 95% C.L. [19,28].

The indirect restrictions can be extracted from the
precision electroweak data, and they are related to the
absence of decoupling with respect to the heavy chiral
fermions. This results in the quadratically increasing de-
pendence of the electroweak radiative corrections on the
heavy fermion masses. To avoid such large corrections, as
the precision data require, the masses of a heavy fermion
doublet should be highly degenerate. Namely, one should
have for the quarks t4 and b4 that (M2

t4 − M2
b4

)/M2
Z ≤ 1;

for the leptons ν4, e4 it is similar.3
To reduce the number of free parameters we assume

in what follows that mt4 = mb4 = mQ and mν4 = me4 =
mL. As representative, we considered two cases: mL/mQ

= 1/2 and 1, with the common mass mQ of the heavy
quarks given by the fourth family scale m4. It follows that
both these typical cases do not contradict the direct ex-
perimental bounds if m4 ≥ 180 GeV. Our results for the
case m4 = 200 GeV, which we consider as a typical one,
are presented in Figs. 6–9.

Figure 6 shows the evolution of α−1
i with µ. It is seen

that the two-loop contributions manifest themselves at
rather low scales, µ = 107–108 GeV. They are governed
by the onset of the strong coupling regime in the Yukawa
sector at such a µ (see Fig. 7). Accordingly, the pertur-
batively consistent region of µ in the Higgs sector shrinks
to the same values (see Fig. 8). When we now apply the
same criteria of self-consistency as in the case of the min-
imal SM, we get the allowed values of MH, depending on
the cutoff scale Λ (Fig. 9). The sensitivity of the restric-
tions to the shift in the mass m4 is also indicated. The
dependence on ∆Mt is much smaller, and it is not shown.

Finally, Fig. 10 presents the two-loop allowed regions
in the m4–MH plane under the restriction on the Yukawa
couplings y ≤ 1.5. The direct influence of the Yukawa per-
turbative validity in two loops on the allowed regions of
m4 and MH is rather weak at high Λ. The figure excludes
the fourth heavy chiral family at high Λ, Λ ≥ 1010 GeV,
independent of the Higgs mass. Under LEP restriction
MH ≤ 215 GeV at 95% C.L.; the fourth chiral family is

3 One important peculiarity of the vector-like family is the
decoupling with respect to the explicit mass term when the
Yukawa couplings are fixed. Hence, unlike in the case of a chiral
family, there is no need here for fine tuning in the Yukawa
couplings to suppress the large radiative corrections.

Fig. 6. Running of the gauge couplings (ng = 4). The fourth
family mass scale is m4 = 200GeV and mL/mQ = 1/2.

Fig. 7. Two-loop running of the Yukawa couplings (ng = 4)
for the third and fourth families at m4 = 200GeV and
mL/mQ = 1/2. The upper and lower curves correspond to
the Higgs masses, respectively, for the upper and lower Higgs
critical curves shown in bold in Fig. 8.
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Fig. 8. Two-loop running of the Higgs quartic coupling (ng =
4) at m4 = 200GeV and mL/mQ = 1/2.

Fig. 9. One- an two-loop self-consistency plot (ng = 4): the
allowed Higgs mass vs. the cutoff scale Λ at m4 = 200GeV and
mL/mQ = 1/2.

Fig. 10. Two-loop self-consistency plot under the restriction
y ≤ 1.5 on the Yukawa couplings (ng = 4): the allowed Higgs
mass vs. the fourth family scale m4. The cutoff scale Λ in GeV
is fixed and Mt = 175GeV.

completely excluded at this C.L.4 The dependence of the
restrictions on the top mass uncertainty is very faint. The
weaker restriction on the Yukawa couplings y ≤ 2 results
in a reduction of the cutoff for m4 > 200 GeV but practi-
cally does not influence the restrictions for Λ ≥ 105 GeV.

4 Conclusions

Let us summarize the differences in the RG global pro-
files of the SM with three and four chiral families. For
three families with the experimentally known masses, the
Yukawa sector stays weakly coupled up to the Planck
scale for all experimentally preferred values of the Higgs
mass, MH ≤ 215 GeV. The validity of the perturbative
SM up to the Planck scale, including the Yukawa sector,
as well as the vacuum stability require the Higgs mass to
be MH = (161.3±20.6)+4

−10 GeV and MH ≥ 140.7+10
−10 GeV.

Here the MH corridor is the theoretical one; the errors are
produced by the top mass uncertainty.

The inclusion of the fourth heavy chiral family quali-
tatively changes the mode of the SM realization. With the
addition of the family, the strong coupling is driven in one

4 Though a possible caveat emerges if one assumes that the
fourth family is vector-like and that, unnatural as it may seem,
its Yukawa couplings are small. Then the ensuing restrictions
on the family are strongly reduced, and the vector-like fourth
family could still exist.
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loop by the Yukawa interactions. It also transmits to the
Higgs self-interactions at the one-loop order. Hence the
strong coupling develops in both these sectors in parallel,
and their couplings blow up at sufficiently low scales. As
a result, the requirement of self-consistency of the pertur-
bative SM as an underlying theory up to the Planck or
GUT scale excludes the fourth chiral family. However, as
an effective theory, the SM allows a heavy chiral family
with a mass up to 250 GeV, depending on the Higgs mass
and the cutoff scale. Under the precision-experiment re-
striction MH ≤ 215 GeV, the fourth chiral family, taken
alone, is excluded. Nevertheless, a pair of chiral families
constituting a vector-like one could still exist.
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Appendices

A.1 SM β functions

Here ng = 3 and the generation index g runs over the val-
ues g = 1, 2, 3. One has in fact

∑
g ≡ δg3. Here and in what

follows the parts of the expressions for the anomalous di-
mension γv which are proportional to the gauge couplings
are valid in the ’t Hooft–Landau gauge ξ = 0.

One-loop contributions

(i) Gauge sector:
(4π)2g−3

1 β
(1)
g1 = 41

10 ,
(4π)2g−3

2 β
(1)
g2 = − 19

6 ,
(4π)2g−3

3 β
(1)
g3 = −7.

(ii) Yukawa sector:
(4π)2y−1

τ β
(1)
yτ = 3y2

τ +2
∑

g(3y2
ug

+3y2
dg

+y2
eg

)− 9
4g2

1 − 9
4g2

2 ,

(4π)2y−1
t β

(1)
yt = 3y2

t − 3y2
b + 2

∑
g(3y2

ug
+ 3y2

dg
+ y2

eg
)

− 17
20g2

1 − 9
4g2

2 − 8g2
3 ,

(4π)2y−1
b β

(1)
yb = 3y2

b − 3y2
t + 2

∑
g(3y2

ug
+ 3y2

dg
+ y2

eg
)

− 1
4g2

1 − 9
4g2

2 − 8g2
3 .

(iii) Higgs sector:
(4π)2β(1)

λ = 12λ2 + 8λ
∑

g(3y2
ug

+ 3y2
dg

+ y2
eg

)

− 9λ( 1
5g2

1 + g2
2) − 16

∑
g(3y4

ug
+ 3y4

dg
+ y4

eg
)

+ 9
4 ( 3

25g4
1 + g4

2 + 2
5g2

1g2
2),

(4π)2v−1γ
(1)
v = −2

∑
g(3y2

ug
+ 3y2

dg
+ y2

eg
) + 9

4 ( 1
5g2

1 + g2
2).

Two-loop contributions

(i) Gauge sector:
(4π)4g−3

1 β
(2)
g1 = 199

50 g2
1 + 27

10g2
2 + 44

5 g2
3

−∑g(
17
5 y2

ug
+ y2

dg
+ 3y2

eg
),

(4π)4g−3
2 β

(2)
g2 = 9

10g2
1+ 35

6 g2
2+12g2

3−∑g(3y2
ug

+3y2
dg

+y2
eg

),

(4π)4g−3
3 β

(2)
g3 = 11

10g2
1 + 9

2g2
2 − 26g2

3 − 4
∑

g(y
2
ug

+ y2
dg

).
(ii) Yukawa sector:
(4π)4y−1

τ β
(2)
yτ = 6y4

τ − 9y2
τ

∑
g(3y2

ug
+ 3y2

dg
+ y2

eg
)

− 9
∑

g(3y4
ug

+ 3y4
ug

− 2
3y2

ug
y2
dg

+ y4
eg

)

+ 3
2λ2 − 12λy2

τ + ( 387
40 g2

1 + 135
8 g2

2)y2
τ

+ 5( 17
20g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
ug

+ 5( 1
4g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
dg

+ 15
4 (g2

1 + g2
2)
∑

g y2
eg

+ 1371
200 g4

1 + 27
20g2

1g2
2

− 23
4 g4

2 ,
(4π)4y−1

t β
(2)
yt = 6y4

t − 5y2
t y2

b + 11y4
b

+ (5y2
b − 9y2

t )
∑

g(3y2
ug

+ 3y2
dg

+ y2
eg

)

− 9
∑

g(3y4
ug

+ 3y4
dg

− 2
3y2

ug
y2
dg

+ y4
eg

)

+ 3
2λ2 − 4λ(3y2

t + y2
b) + ( 223

40 g2
1 + 135

8 g2
2

+ 32g2
3)y2

t − ( 43
40g2

1 − 9
8g2

2 + 32g2
3)y2

b

+ 5( 17
20g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
ug

+ 5( 1
4g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
dg

+ 15
4 (g2

1 + g2
2)
∑

g y2
eg

+ 1187
600 g4

1 − 9
20g2

1g2
2

− 23
4 g4

2 + 19
15g2

1g2
3 + 9g2

2g2
3 − 108g4

3 ,
(4π)4y−1

b β
(2)
yb = 6y4

b − 5y2
by2

t + 11y4
t

+ (5y2
t − 9y2

b)
∑

g(3y2
ug

+ 3y2
dg

+ y2
eg

)

− 9
∑

g(3y4
ug

+ 3y4
dg

− 2
3y2

ug
y2
dg

+ y4
eg

)

+ 3
2λ2 − 4λ(3y2

b + y2
t )

+ ( 187
40 g2

1 + 135
8 g2

2 + 32g2
3)y2

b

− ( 79
40g2

1 − 9
8g2

2 + 32g2
3)y2

t

+ 5( 17
20g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
ug

+ 5( 1
4g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
dg

+ 15
4 (g2

1 + g2
2)
∑

g y2
eg

− 127
600g4

1 − 27
20g2

1g2
2

− 23
4 g4

2 + 31
15g2

1g2
3 + 9g2

2g2
3 − 108g4

3 .
(iii) Higgs sector:
(4π)4β(2)

λ = −78λ3 + 54λ2( 1
5g2

1 + g2
2)

+ λ( 1887
200 g4

1 + 117
20 g2

1g2
2 − 73

8 g4
2)

− 3411
1000g6

1 − 1677
200 g4

1g2
2 − 289

40 g2
1g4

2 + 305
8 g6

2

− 3g4
2
∑

g(3y2
ug

+ 3y2
dg

+ y2
eg

)

− 32
5 g2

1
∑

g(2y4
ug

− y4
dg

+ 3y4
eg

)

− 256g2
3
∑

g(y
4
ug

+ y4
dg

)

+ 20λ
(
( 17
20g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
ug

+ ( 1
4g2

1 + 9
4g2

2 + 8g2
3)
∑

g y2
dg

+ 3
4 (g2

1 + g2
2)
∑

g y2
eg

)
+ 6

5g2
1

(
(− 57

10g2
1 + 21g2

2)
∑

g y2
ug

+ 3( 1
2g2

1 + 3g2
2)
∑

g y2
dg

+ (− 15
2 g2

1 + 11g2
2)
∑

g y2
eg

)
− 48λ2∑

g(3y2
ug

+ 3y2
dg

+ y2
eg

)

− 4λ
∑

g(3y4
ug

+ 3y4
dg

+ y4
eg

− 6y2
ug

y2
dg

)



Yu.F. Pirogov, O.V. Zenin: Two-loop renormalization group restrictions on the standard model 637

+ 160
∑

g(3y6
ug

+ 3y6
dg

+ y6
eg

)

− 96
∑

g(y
4
ug

y2
dg

+ y4
dg

y2
ug

) ,

(4π)4v−1γ
(2)
v = − 3

2λ2 − 1293
800 g4

1 + 271
32 g4

2 − 27
80g2

1g2
2

− 5
2 ( 17

10g2
1 + 9

2g2
2 + 16g2

3)
∑

g y2
ug

− 5
2 ( 1

2g2
1 + 9

2g2
2 + 16g2

3)
∑

g y2
dg

− 15
4 (g2

1 + g2
2)
∑

g y2
eg

+ 9
∑

g(3y4
u + 3y4

d − 2
3y2

uy2
d + y4

e ).

A.2 Neutrino Yukawa contributions to SM β functions

One-loop contributions

(i) Yukawa sector:
(4π)2Y−1

ν β
(1)
Yν

= 3
2 (Y†

νYν − Y†
eYe) + Y2(S) − 9

20g2
1 − 9

4g2
2 ,

(4π)2Y−1
e ∆β

(1)
Ye

= − 3
2Y

†
νYν + Tr(Y†

νYν),

(4π)2Y−1
u ∆β

(1)
Yu

= Tr(Y†
νYν),

(4π)2Y−1
d ∆β

(1)
Yd

= Tr(Y†
νYν).

(ii) Higgs sector:
(4π)2∆β

(1)
λ = 4λTr(Y†

νYν) − 4Tr
(
(Y†

νYν)2
)
,

(4π)2v−1∆γ
(1)
v = −Tr(Y†

νYν).

Two-loop contributions

(i) Gauge sector:
(4π)4g−3

1 ∆β
(2)
g1 = − 3

10Tr(Y†
νYν),

(4π)4g−3
2 ∆β

(2)
g2 = − 1

2Tr(Y†
νYν).

(ii) Yukawa sector:
(4π)4Y−1

ν β
(2)
Yν

= 3
2 (Y†

νYν)2 − Y†
νYνY†

eYe

− 1
4Y

†
eYeY†

νYν + 11
4 (Y†

eYe)2

+ Y2(S)( 5
4Y

†
eYe − 9

4Y
†
νYν) − χ4(S)

+ 3
2λ2 − 2λ(3Y†

νYν + Y†
eYe)

+ ( 279
80 g2

1 + 135
16 g2

2)Y†
νYν

− ( 243
80 g2

1 − 9
16g2

2)Y†
eYe + 5

2Y4(S)

− ( 3
40 − 1

5ng)g4
1 − 27

20g2
1g2

2 − ( 35
4 − ng)g4

2 ,

(4π)4Y−1
e ∆β

(2)
Ye

= −Y†
eYeY†

νYν − 1
4Y

†
νYνY†

eYe

+ 11
4 (Y†

νYν)2+ 5
4Y2(S)Y†

νYν−2λY†
νYν

− ( 3
16g2

1 − 129
16 g2

2)Y†
νYν ,

(4π)4Y−1
u ∆β

(2)
Yu

= (5
4Y

†
dYd − 9

4Y
†
uYu)Tr(Y†

νYν)

− Tr
(

9
4 (Y†

νYν)2 − 1
2Y

†
νYνY†

eYe

)
+ 15

8 ( 1
5g2

1 + g2
2)Tr(Y†

νYν),

(4π)4Y−1
d ∆β

(2)
Yd

= (5
4Y

†
uYu − 9

4Y
†
dYd)Tr(Y†

νYν)

− Tr
(

9
4 (Y†

νYν)2 − 1
2Y

†
νYνY†

eYe

)
+ 15

8 ( 1
5g2

1 + g2
2)Tr(Y†

νYν).
(iii) Higgs sector:
(4π)4∆β

(2)
λ = − 3

2g4
2Tr(Y†

νYν)

− 3
10g2

1( 3
5g2

1 + 2g2
2)Tr(Y†

νYν)
+ 15

2 λ( 1
5g2

1 + g2
2)Tr(Y†

νYν)

− 24λ2Tr(Y†
νYν) − λTr

(
(Y†

νYν)2
)

+ 2λTr
(
Y†

νYνY†
eYe

)
+ 20Tr

(
(Y†

νYν)3
)

− 4Tr
(
Y†

νYν(Y†
νYν + Y†

eYe)Y†
eYe

)
,

(4π)2v−1∆γ
(2)
v = − 15

8 Tr
(
( 1
5g2

1 + g2
2)Y†

νYν

)
+ 9

4Tr
(
(Y†

νYν)
2
)

− 1
2Tr
(
Y†

νYνY†
eYe

)
,

where
Y2(S) = Tr(3Y†

uYu + 3Y†
dYd + Y†

νYν + Y†
eYe),

χ4(S) = 9
4Tr

(
3(Y†

uYu)2 + 3(Y†
dYd)2 + (Y†

νYν)2

+ (Y†
eYe)2 − 2

3Y
†
uYuY

†
dYd − 2

9Y
†
νYνY†

eYe

)
,

Y4(S) = Tr
(
( 17
20g2

1 + 9
4g2

2 + 8g2
3)Y†

uYu

+ ( 1
4g2

1 + 9
4g2

2 + 8g2
3)Y†

dYd

+ 3
4 ( 1

5g2
1 + g2

2)Y†
νYν + 3

4 (g2
1 + g2

2)Y†
eYe

)
.

Our definition of the Yukawa matrices and the invariants
immediately generalizes that of [14].

A.3 Heavy neutrino contributions to SM β functions

For simplicity we put here ν4 = N, e4 = E. In what follows
ng = 4 and the generation index g runs over the values
g = 1, . . . , 4. Our normalization for the Yukawa couplings
yfg corresponds to (Ydiag

f )gg′ =
√

2yfgδgg′ . In practice,
one has yνg = 0 for g 6= 4.

One-loop contributions

(i) Yukawa sector:
(4π)2y−1

N β
(1)
y

N
= 3y2

N − 3y2
E + Y2(S) − 9

20g2
1 − 9

4g2
2 ,

(4π)2y−1
E ∆β

(1)
yE = −y2

N ,
(4π)2y−1

f ∆β
(1)
yf = 2y2

N ,
where f 6= N, E.
(ii) Higgs sector:
(4π)2∆β

(1)
λ = 8λy2

N − 16y4
N .

(4π)2v−1∆γ
(1)
v = −2y2

N .

Two-loop contributions

(i) Gauge sector:
(4π)4g−3

1 ∆β
(2)
g1 = − 3

5y2
N ,

(4π)4g−3
2 ∆β

(2)
g2 = −y2

N .
(ii) Yukawa sector:
(4π)4y−1

N β
(2)
y

N
= 6y4

N −5y2
Ey2

N +11y4
E + 1

2Y2(S)(5y2
E −9y2

N )

− χ4(S) + 3
2λ2 − 4λ(3y2

N + y2
E)

+ ( 279
40 g2

1 + 135
8 g2

2)y2
N − ( 243

40 g2
1 − 9

8g2
2)y2

E

+ 5
2Y4(S) + 3

5 (− 1
8 + 1

3ng)g4
1 − 27

20g2
1g2

2
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− ( 35
4 − ng)g4

2 ,

(4π)4y−1
E ∆β

(2)
yE = 11y4

N − 5y2
Ey2

N + 5
2Y2(S)y2

N − 4λy2
N

− ( 3
8g2

1 − 129
8 g2

2)y2
N ,

(4π)4y−1
u ∆β

(2)
yu = (5y2

d − 9y2
u)y2

N − (9y2
N − 2y2

E)y2
N

+ 15
4 ( 1

5g2
1 + g2

2)y2
N ,

(5y2
u − 9y2

d)y2
N − (9y2

N − 2y2
E)y2

N

+ 15
4 ( 1

5g2
1 + g2

2)y2
N .

(iii) Higgs sector:
(4π)4∆β

(2)
λ = −3g4

2y2
N − 3

5g2
1( 3

5g2
1 + 2g2

2)y2
N

+ 15λ( 1
5g2

1 + g2
2)y2

N − 48λ2y2
N − 4λy4

N

+ 8λy2
Ey2

N + 160y6
N − 32y2

E(y2
N + y2

E)y2
N ,

(4π)2v−1∆γ
(2)
v = − 15

4 ( 1
5g2

1 + g2
2)y2

N + 9y4
N − 2y2

Ny2
E ,

where
Y2(S) = 2

∑
g(3y2

ug
+ 3y2

dg
+ y2

νg
+ y2

eg
),

χ4(S) = 9
∑

g(3y4
ug

+3y4
dg

− 2
3y2

ug
y2
dg

+y4
νg

+y4
eg

− 2
9y2

νg
y2
eg

),

Y4(S) = 2
∑

g

(
( 17
20g2

1 + 9
4g2

2 + 8g2
3)y2

ug

+ ( 1
4g2

1 + 9
4g2

2 + 8g2
3)y2

dg

+ 3
4 ( 1

5g2
1 + g2

2)y2
νg

+ 3
4 (g2

1 + g2
2)y2

eg

)
.

In fact, only the third and fourth generations contribute
here in the sums.
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Note added in proof

More conservative recent restrictions MH ≤ 262 GeV or
MH ≤ 300 GeV from the papers F. Teubert,
hep-ph/9811414 and G. D’Agostini, G. Degrassi,
hep-ph/9902226, respectively, though render our conclu-
sion about non-existence of the fourth heavy chiral family
less reliable, nevertheless do not contradict it.


